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Relaxation effects on the flow over slender bodies 

By J. F. CLARKE 
College of Aeronautics, Cradeld, Bucks 

(Received 29 March 1961) 

The effects of heat-capacity lag on the flow over slender bodies are examined by 
means of an extension of Ward’s (1949) generalized treatment of the slender-body 
problem. The results are valid for smooth bodies of arbitrary cross-sectional 
shape and attitude in the complete Mach number range up to, but not including, 
hypersonic conditions. Transonic flow can be treated owing to the presence of a 
dissipative mechanism in the basic differential equation, but the results in this 
Mach number range are probably of limited practical value. 

The results show that cross-wind forces are unaffected to a first approximation, 
but that drag forces comparable with laminar skin-friction values can arise as a 
result of the relaxation of the internal degrees of freedom. The magnitude and 
sign of these effects depend strongly on body shape and free-stream Mach 
number. 

Results are given for the surface pressure coefficient, and the variations of 
translational and internal mode temperature on and near the body are also found. 
The influence of these latter effects on heat transfer to the body is discussed. 

1. Introduction 
In  the sections to follow we shall examine the flow of a polyatomic gas about 

slender three-dimensional bodies, taking into account the effects of heat-capacity 
lag. To simplify the problem we shall assume that the gas is inviscid and non-heat 
conducting, although we shall attempt, very briefly, to indicate how these gas 
properties would affect the simpler flow patterns obtained here. 

From a practical point of view, relaxation effects are likely to assume greater 
significance as the general level of gas pressure decreases. The relaxation times for 
adjustment of internal molecular states to conditions of thermal equilibrium 
vary inversely with pressure, and it is conceivable that we may find ‘relaxation 
lengths’ comparable with over-all body length in some circumstances. (‘Relaxa- 
tion length ’ is defined as the product of relaxation timer and free-stream sp.eed U.) 
Provided that the number of collisions required to excite the internal mode is 
sufficiently large, it is possible to encounter such conditions within the regime of 
continuum flow. We treat the problem on the basis of this possibility. 

The analysis to follow makes no explicit reference to any particular gas or 
mixture of gases, but some examples are given for CO,, a gas which exhibits some 
of the required effects in circumstances which are practically realizable. 

The effects of internal-mode relaxations on gas-dynamic behaviour have been 
investigated previously by Gunn (1952), who gave an account of sound absorp- 
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tion and dispersion, shock-wave effects, one-dimensional nozzle flows, and of the 
drag experienced by an object as a result of the dissipative actions of relaxation 
(the latter confined to two dimensions). The drag problems treated by Gunn are 
generally tackled by finding the perturbations introduced into a ‘ non-relaxing ’ 
gas flow, and he does not consider questions of transonic or supersonic flow. Here 
we attempt to ‘unify’ the treatment in the manner of Ward‘s (1949) solution of 
the inert-gas slender-body problem. The general question of relaxing and reacting 
gas flows has received a certain amount of attention recently, and it is pertinent 
to remark here on the formal similarity which exists between effects of heat- 
capacity lag and those which arise when endothermic chemical reactions occur in 
a gas flow. This similarity is made apparent by the fundamental work of Kirk- 
wood & Wood (1957), and appears also in recent papers by Moore & Gibson (1960) 
and Vincenti (1960). An analysis of the supersonic flow of a chemically reacting 
gas round a sharp corner which would apply equally well to a relaxation effect 
problem has been given by Clarke (1 960 a) .  Moore & Gibson based their considera- 
tions on a velocity potential which satisfies the telegraph equation. The latter can 
be shown to approximate to the ‘exact ’ small-perturbation equation for cases 
where the differences between frozen and equilibrium sound speeds are small. 
Vincenti considered the ‘wavy-wall’ problem, thereby dealing with a type of 
fundamental solution of the steady two-dimensional small-perturbation equation 
for reacting or relaxing gas flows, using, as does Clarke, the ‘exact’ small-disturb- 
ance equation. The one-dimensional unsteady analogue of Vincenti’s problem 
(the harmonically oscillating piston) has been examined by Clarke (1958), and the 
step-input piston problem in a reacting gas has been treated by Chu (1957). 

Most of the work to date, therefore, has been concerned with ‘fundamental ’ 
types of solutions, or ‘inputs ’, to the gas. One may perhaps level some criticism, 
from a practical point of view, at the ‘wavy-wall’ and harmonically oscillating 
piston solutions, since it is an essential feature of relaxation or reaction effects that 
entropy shall be produced continuously during the time taken to reach a new 
equilibrium state. The infinite past histories of these processes would therefore, 
strictly, require an infinite difference of entropy between the postulated ‘undis- 
turbed’ regions and those adjacent to the object. Such (rather pedantic) 
objections are removed when the disturbing influence is of finite physical size 
(or duration). 

As noted by Vincenti, the inclusion of a dissipative mechanism into the analysis 
permits one to obtain continuous solutions from a purely linear equation right 
through the ‘transonic’ region. Indeed, the presence of an infinity of sound 
speeds, ranging from the frozen to full equilibrium values, smears the transonic 
region over a k i t e  band of free-stream velocities, so that the singular behaviour 
of the linear flow equations is confined to only one frequency of the infinite range 
which must be superimposed to summarize the effect of the obstacle as a whole 

2. The equations 
We shall assume in what follows that only one internal energy mode exhibits 

significant relaxation effects. Any other modes are treated as ‘active ’ modes, and 
it is supposed that their energy content is specified once the translational tem- 
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perature T, is known. Following Kirkwood & Wood (1957), it is assumed that the 
state of the relaxing mode is described by another temperature T,, which only 
equals T, when complete thermal equilibrium prevails. The specific internal 
energy e of the gas is made up as follows : 

e = e,+e,, (1)  

where el = r C v l d T l ,  0 

e2 =f C,,dT,. 
T I  

0 
(3) 

Here C,, and C,, are the specific heats at constant volume for the translational 
plus active degrees of freedom of the molecule and for the relaxing mode, 
respectively. When e2 is in equilibrium with el, the upper limit of integration in 
equation (3) is replaced by T,. We write C, for the total specific heat at constant 

(4) 
volume, i.e. c, = CVl+CV2. 

(When C,, and C,, are temperature dependent, equation (4) only has a meaning 
when T, = T,.) Note that a similar notation is followed by the specific heats at  
constant pressure. We shall write 

c, = CDl+CV2. (5) 

P = PET,, (6) 

The pressure p ,  density p, and translational temperature are related by 

where R is the appropriate gas constant per unit mass. The gas is therefore treated 
as thermally perfect. 

The relaxation of the internal mode to an equilibrium state is assumed to be 
described by the linear law 

7' De2(T2) ~ - - e,(T,) - e,(T,), 
Dt ( 7 )  

where 7' is therefore the relaxation time, D/Dt the usual convective operator, and 
e,(T,) signifies that the internal mode has an energy content appropriate to the 
actual, local, translational temperature. Since we are to deal with small perturba- 
tions from an originally undisturbed (equilibrium) stream, it is reasonable to 
assume that T' is constant throughout. Furthermore, since T, will not differ 
greatly from TI in these circumstances, equation (3) shows that we can approxi- 
mate equation (7) by 

(8) 
I DT, T- - -=T-T 

Dt ,' 
This is tantamount to saying that C,, is a constant, evaluated at  the free-stream 
temperature T,; and, in the small-disturbance problem, we may say likewise 
for C,,. 

The energy equation can be written as 

Cvl--+Cv2-+-divq DTl DT, P = 0, 
Dt Dt P 

(9) 
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and C,, and CV2 can subsequently be treated as constants. Here q is the gas velocity 
vector, and we do not introduce any further linearization at the present stage. 
DT,lDt can be eliminated from equation (9) by means of (8) ; and, using the mass 
conservation equation in the form derived by Kirkwood & Wood, it can be shown 
that 

Here a, and a2 are the frozen and equilibrium sound speeds, respectively, and are 
given by 

(11) 4 = ~ ~ P l I ~ V l ~  (PIP),  4 = (CPlCU) (PIP). 
Now, we would anticipate, on physical grounds, that the presence of relaxation 

effects in a gas flow will serve to make ‘detailed ’ changes in the flow pattern when 
compared with a corresponding inert-gas problem, but will not change the 
‘orders of magnitude’ of quantities involved. For example, in the case of the 
linearized reacting gas flow round a sharp corner, the pressure coefficient on the 
surface is found to vary from - 28/B, to - 28/Be, where 8 is the turning angle and 
Bf and Be are the usual Ackeret Mach-number factors based on the frozen and 
equilibrium sound speeds, respectively. The variation from a B, to a Be type of 
factor represents a ‘detailed’ change of pressure coefficient, but its ‘order of 
magnitude ’ remains at  the value 8. There is no reason to suspect that this situation 
will alter when we come to consider the three-dimensional situation involved in 
the present slender pointed body problem, and accordingly we accept, as a general 
guide, the orders of magnitude given in Ward’s (1949) paper. It should be 
remarked at  this stage that we are only going to deal with steady-flow problems in 
what follows. Henceforth, therefore, the operator DIDt becomes synonymous 
with q . grad. Thus we shall follow the procedure, which is rigorously justifiable in 
the case of inert gas flow past slender bodies (see, for example, Lighthill 1945), of 
linearizing the basic differential equation but keeping appropriate non-linear 
terms in the relation between pressure and velocity. 

It has been shown by Vincenti (1959) and Moore & Gibson (1960) that the 
linear approximation in a relaxing or reacting gas flow is consistent with the 
existence of a velocity potential. Defining a disturbance potential such that 

where u, v, w are the disturbance velocity components in a cylindrical polar 
co-ordinate system (x, r,  8) ,  the linearized version of (10) becomes 

(13) 
in which h = rU, r = Cp,r’/Cp, (14) 

where U is the free-stream velocity, directed along the x-axis, h is the relaxation 
length, and Hf and Me are the frozen and equilibrium Mach numbers, namely, 

Mf = U/U,,, Me = U/U,,. (15) 

(Suffix a3 denotes a free-stream, or undisturbed, value.) 



Relaxation effects on the $ow over slender bodies 581 

I n  accordance with the remarks made above, the pressure coefficient is written 
as 

(see, for example, Ward 1949). The pointed nose of the body is assumed to lie 
at  x = 0. 

3. The general solution 

exponential Fourier transform. Thus we define 
The general solution of equation (13) can most easily be obtained by taking the 

1 l-m 

Assuming that $, a#/ax and aZ$/ax2 all vanish asymptotically with increasing 
distance upstream and downstream from the body, it is found that @ satisfies the 
following differential equation: 

Expressing @ as a Fourier series in 8, we find that each coefficient of cosn8 or 
sin n0 is the solution of a modified Bessel equation of order n. In  fact we can write 
the solution formally as 

@(r,8; w )  = A,(w)K,(rw(l -Iw;)aZ>+ A,(w)K,{ro(l -Mj)BZ)cos(nB+s,), 

(19) 

m 

n= 1 

where A ,  (n = 0,  1,2,  . . . ) and s,(n = 1, 2, . . .) are constants which are to be evalu- 
ated from the boundary conditions on the body. Also, 

Modified Bessel functions of the first kind (i.e. I,) are rejected in the solution for 
0 because they are found not to represent the proper type of 'outgoing' wave 
system. 

In  interpreting equation (19)) we must distinguish between the following three 
cases : 

(i) Mf < &Ie < 1 : the subsonic case. Here we shall write 

(1 -1Mj)h = pr, (1 -iq)/(l -Mj) = p2 ( <  1). (21) 

@f /@I 2, (22) 

where z = (w + ih-'p)B (w + iA-l)-&, (23) 

In  this case we must write the argument of the Bessel functions as 

and invert the transform along the real w-axis. 
(ii) Mf < 1 < He: the transonic case. In  place of (21)) we must now write 

(1 - 1Mp = pr, (M2, - 1)/( 1 - M?) = $2. (24) 
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Note that 0 < p2 < co. The proper behaviour of the solution is then assured if 
inversion takes place on a contour indented to pass above the singularity at 
w = 0, and beginning and ending a t  w = me(" and +co respectively. The argu- 
ment of the Bessel functions is now written as 

where 

(iii) Me > M ,  > 1: the supersonic case. When these Mach number conditions 

(27) 

are satisfied, we write 

(M:- 1)) = Bf,  (Mz- l)/(M;- 1) = B2 ( > 1). 

eigHrwBf 2 ,  (28) 

where 2" = {W + iB2h-l}& (W + ih-'}a. (29) 

The argument of the Bessel functions is now written as 

Proper behaviour of the solution is guaranteed if we use the inversion contour 
described in case (ii). 

I n  dealing with slender bodies we can now approximate equation (19) near the 
body by retaining only the first terms in the series expansions of the Bessel 
functions. Then it is found that 

Q(r,O; w) N -A0{C+log[g(r l1-M~lBwZ)]}  

1 "  +- C (n- 1)!An2n(r 11 -M;l)wZ)-ncos (n@+eJ, (30) 

where C = 0-5772 ... is Euler's constant. The terms written formally as w 2  in 
equation (30) must be interpreted in the forms given above in each of the cases (i), 
(ii) and (iii). Following Ward (1949), we can now define the complex variable 5 in 
cross-flow planes, i.e. 5 = reis, whence equation (30) is equivalent to 

2 n = l  

m 

~2 = 4 + i@ = a,(.) log <+ b,(x) + Z a&) 5pn. (31) 
n= 1 

The quantities a,, b, and a, (n = 1,2 ,3 ,  . . .) are defined as follows (using the symbol 
2 to mean 'has the Pourier transform ') : 

} (32) 
a,(.) = -A,(w),  bO(4 = - A , @ )  {C + 1% [+( 11 -M;p WZ)1)' 

a,(.) 2 +(n- 1)!An(w)2n(11-M;1*wZ)-nexp (ien). 

The quantity !2 - b, is the same harmonic function in both this case and in 
Ward's, implying in the present case that the 'incompressible cross-flow ' approxi- 
mation is still valid. In  other words, the a,(.) quantities (n 1) can still be found 
by solving a two-dimensional, incompressible, potential-flow problem with 
suitable boundary conditions imposed on the surface of a cylinder whose cross- 
section is that of the body at any chosen station x. To the present order of 
approximation, these an(x) terms are therefore unaffected by relaxation effects. 

Since Ward's momentum integral results for over-all forces on the body apply 
equally well here, it is concluded that both the over-all and local cross-flow 
forces are unaffected by relaxation in the linearized approximation. 
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If we omit the base drag term where blunt-based bodies are concerned, the 
‘inert gas’ expression for drag D (which is equally applicable here) is 

In  this equation we have written ah for the x-derivative of a,. L is the body length 
along the x-axis, and the (pointed) nose of the body lies at  x = 0. In  the final 
integral, a$lav represents the disturbance-potential derivative taken along the 
outwards normal to the body cross-section contour, and the integral is taken 
around the perimeter of this cross-section. 

a,(x) = U#’(x)/27r, (34) 
As before, we have 

where S(x) is the body’s cross-sectional area. The prime on S denotes differentia- 
tion with respect to x. Clearly #‘( 0) = 0 for any streamlined body which begins at  
x = 0, since the body radius is zero there by definition. The additional restriction 
to pointed nosed bodies, mentioned above, is necessary for the linearizations of 
the basic equations to be valid. Only in this case will the disturbance velocities 
remain small compared with U over most of the region adjacent to the body. 

The presence of upstream influence effects in the sub- and transonic regimes 
implies that we should confine our attention to bodies which are also pointed at 
the tail ( x  = L) in these cases, at least in the absence of a priori knowledge about 
viscous wake patterns. With this additional restriction, equation (33) reduces to 

Equation (33) will only be used in full in the supersonic dgime, where the absence 
of upstream influence permits us to deal with blunt-based bodies. 

4. The values of b,(x) 
The solution of the relaxation problem is completed once b, is found as a 

function of x. In  other words we must invert the Fourier transforms given in 
equation (32), taking care to treat each of the cases (i), (ii) and (iii) separately. 
The actual evaluations are carried out in Appendix A and yield the following 
results : 
Case (i) 

- ~ ~ z # ’ ( y )  {exp [-/P(x - y) h-l] - exp [ - (x- y) A-l]) *. (36) 

The first two integral terms here are precisely the same as those which occur in 
the inert gas, subsonic-flow, case (Sears & Adams 1953). The third integral, 
together with the logarithm term, represents the effects of relaxation. Since an 
integral of this type is found to arise in other cases, it is worthwhile giving it a 
special symbol. Thus we write 

2 0  2-Y 

I/ = -2s 1 “  ~’(y){exp[-~2(x-y)h-l]-exp[-(x-y)h-l]}--. dY (37) 
0 X - Y  
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When the integral contains p or B in place of p we will denote this fact by an 
appropriate suffix, as in equation (37). In  general we shall write it as I,,., where 
a may be /3, p or B. 

A useful alternative form of I/ is found by noting the definition of the ex- 
ponential integral Ei ( - a) :  that is, 

Ei ( - a )  = - j: e-“ r1 da.  (38) 

Integrating equation (37) by parts with the upper limit equal to x - E ,  and then 
taking the limit as E -+ 0,  we obtain 

Ip = X’(x)logp+- ijI S’(y) ( Ei ~ ~ x ) - E i ( / 3 2 ~ ) ] d y .  __ (39) 

We shall also find some approximate forms of la useful in later sections. Thus, 
when both x /h  and /32x/h -+ 0, we find that 

la 21 -+(1-/32)A-l8(x). (40) 

la N s’(X)logp+*h(p-2- l)X”(x). (41) 

When both x /h  and P2x/h --f co, it can be shown that? 

Equation (40) is a suitable approximation for near-frozen flow (as A --f a), and 
equation (41) is useful in near-equilibrium flow (as h -+ 0) ,  provided pz does not 
become so small that P2x/h is no longer large. Thus equation (41) cannot be used 
too near to the beginning ofthe transonic rkgime. In  the event that xlh 9 1 whilst 
pz x /h  < 1, it can be shown that IF behaves as follows: 

Ip 2: - ; / x 6 ” ( ? J ) l o g ( x - y ) d y + ~ / 3 ~ h - ~ ~ ( x )  ++6‘(x)lo”C8’(x)-~h8’’(x). 
0 

(42) 

This result demonstrates how the solutions begin to break down as one approaches 
the ‘transonic ’ condition Me + 1 (identical with /3 -+ 0)  in the limiting case of 
A -+ 0. In  other words, if h = 0 and complete equilibrium prevails, the potential 
contains a logarithmic singularity in the limit Me = 1. However, when h $. 0, the 
linear solution continues smoothly up to the condition Me = 1. We shall shortly 
show that it also passes smoothly and continuously through this condition and 
into the transonic r6gime. 

Case (ii) 
b 
u 2n2 = X‘(x) log (+Pr) - S”(y) log (x - y) dy 

t Note that equation (41) always fails in some region sufficiently close to the nose of the 
body (where x/L < 1) for any finite value of h however small. I n  such regions equation (40) 
is applicable. 
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This result should be compared with the subsonic value of b, given in equa- 
tion (36). With use of the notation defined in equations (37) et seq., equation (43) 
can be rearranged somewhat to read 

b 
27T 0 = Y(x) log (&&) -1% XW(y) log (x - y) dy 

U 0 

In  this form it can fairly readily be seen that equations (36) and (44) become 
identical in the limits p and p = 0. Thus b, passes smoothly into the transonic 
rdgime, provided that 0 < h < co. It should be noted that equation (44) only 
follows from equation (43) if S ( L )  = 0. We assume X'(L) = 0 throughout 
cases (i) and (ii). 

When the conditions x /h  and P2x/h < 1 are both satisfied (note that this 
requires M, not too near to l) ,  a suitable approximate form of b, is 

2772 b sr(x)log(:pf)-i/ 1 "  X"(y)log(x-y)dy 

U -  0 

When the upper limit of the transonic range is approached, so that p -+ co, we 
may find a suitable approximate representation of b, under the conditions 
x/h < 1, T x / h  9 1, namely 

b 
U -  2 0  '1" 271.2 X'(x)log(+B,)-- X"(y)log(x-y)dy 

l h  1 
gX'(2) [c -log h] - - = &"'(x) - - 2h 8 ( ~ ) .  (46) 

2 P2 
Provided that we are not now too near to the lower end of the transonic range 

(Me -+ l), we may be able to satisfy the conditions x /h  and $2x/h both B 1. In that 
case, a suitable approximation for b, is 

Finally, we write down the 'near-equilibrium' result a t  the lower end of the 
transonic range, i.e. x/h 9 1, P2x/h < 1. This is 

2773 Xr(x) log(+pf)-  X"(y)log(y-x)dx 
U -  

h 
2 

- ~ S ' ( X )  [C-l~gh]--X(x) P 2  --X"(Z). (48) 
2h 
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Further comment on the behaviour of b, in the transonic range will be post- 
poned until we come to consider questions of drag in a later section. 

Case (iii) 
In  the supersonic regime it is found that 

(see equations (37) et seq. for the definition of IB). Since IB is identical with 4, 
except that B is now written for /3, it follows that we can write 

when x/h and P x / h  both -+ 0, and 

IB N X'(X) log B - Qh( 1 - B-2) X"(X), (51) 

when both x / h  and B2x/h -f m.7 
The approximation in equation (50) is not suitable if B2 becomes too large 

(i.e. if we are too near to M, = 1). In  the event that x /h  < 1 whilst B2x/h 9 1, we 
find that 

h 1 
2B2 2h 

+- x"(x)---X(x). (52) 

Comparing this result with equation (46), it can be seen that they become 
identical in the limit p --f co, B +- co. It can be shown that the values of b,, in the 
transonic and supersonic cases coincide for all h when M, = 1, so that a smooth 
transition from transonic to supersonic states occurs. (See also equations (47) and 
(49) with (51) when p 2  --f 03 and B2 --j. co.) 

5. Drag 
Having obtained values for b,, it is now possible to evaluate the drag of bodies 

in a relaxing gas flow, making use of Ward's formula (written out in full, except 
for base drag, in equation (33)). It has been remarked earlier that the sub- and 
transonic problems must be restricted to bodies pointed at  both ends. This 
condition can be relaxed in the fully supersonic regime. We shall deal with the 
two classes of body shape separately. 

(a) Doubly -pointed bodies 
Here we can use the simpler formula (35). Writing 

D = +pa (53)  

t The referee has pointed out that equation (51) is not suitable for all classes of body 
shape; in particular, not for a body whose meridian profile resembles a semi-infinite 'wavy 
wall'. We therefore require that the bodies must be 'sufficiently smooth', but make no 
attempt here to investigate the implications of this statement. 
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where So is some suitable reference area and VD is the drag coefficient, we proceed 
to find values of VD in each of the cases (i), (ii) and (iii) treated above. 

Case (i) 
Using equation (34) for ao, it can readily be shown that the first two integrals in 

(36) combine to give a zero contribution to VD in all circumstances, as indeed 
does the first term in (36). Turning to the last integral in (36), namely Ip, we can 
obtain a compact general result by way of the form of IIB given in (39). The first 
term in (39) contributes nothing to the final value of VD and we are left with 

or, alternatively, 

It is interesting to compare this result with the wave-drag result for the super- 
sonic flow past doubly-pointed bodies (with no relaxation effects) obtained by 
Ward and others. (We shall obtain this result in examining case (iii) below-see 
equation (64).) Here the kernel of the drag integral is made up of the exponential 
integral terms in place of the simple logarithm. Equation (54) contrasts with the 
non-relaxing subsonic flow problem, which would yield zero drag since it includes 
no dissipative mechanism to give rise to a drag. Clearly the VD predicted by 
equations (54) is always positive; for example, in the ‘near-frozen’ case we may 
use the approximation (40) to show that 

whilst in ‘near-equilibrium’ flow (p  not too near zero) equation (41) shows that? 

The fact that p is < 1 in subsonic flow then guarantees that VD is positive. 
Since VD + 0 in either limiting case h -+ 0 or h -+ 00, and is positive between 

these limits, it follows that there must be a maximum value of gD somewhere 
between h = 0 and co. The value of A which will make the ‘relaxation’ drag a 
maximum will depend on both the body shape and the value of pz, It does not 
seem possible to find this value analytically, either in general terms or for a 
particular body shape, but one would suspect that it should be such as to make 
L/h roughly of order one.$ 

t In using equation (41) to evaluate drag in the ‘near-equilibrium’ case, it is implied 
that the errors introduced into So W D  by ignoring the failure of equation (41) near a = 0 are 
negligible. This is a fairly restrictive condition, aa can be appreciated from an examination 
of the exact value of Is in the case of a parabolic arc body, treated in this section below. 
Equation (66) and corresponding expressions derived in caaea (ii) and (iii) are sufficient for 
a discussion of generalities but must be used with care when deriving approximate 
numerical results. 

3 But see the numerical example later in this section. 
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In  the event that P2 --f 0 whilst h is small, the approximation (55) becomes 
valid, giving 

(57) 

The appearance of the double integral term in this expression is interesting, since 
it is precisely one-half of the supersonic wave drag for this class of body shape. 
In  the equilibrium flow limit at  Me = 1 (/32 = 0)) the present theory therefore puts 
the ‘transonic ’ drag at just this value. Practically of course, the result is incorrect 
since the original partial differential equation (equation (13)) fails to describe the 
flow field properly for Me = 1 and h = 0. When h is not zero, we may expect that 
equation (57) has some validity, however, because in this condition there is a 
mechanism present for preventing the ‘ piling-up ’ of acoustic disturbances which 
leads to the breakdown of linear solutions when Me = 1 and h = 0. A similar 
situation is encountered in the case M, = 1, h = a. 

Case (ii) 

rearrangement, it  can be shown that 
In  the transonic case it is best to use the result (43) to find the drag. After some 

Comparing this with the result for the subsonic case (equation (54))) it can be seen 
that a term exactly equivalent to fl0%’ (subsonic) occurs, the only difference 
being the appearance of p for /3. Now, however, the drag is reinforced by the 
presence of a full supersonic wave-drag contribution (first integral in equa- 
tion (58))) combined with a further relaxation term. To distinguish between the 
various contributions to VD in the present case, we shall refer to the first two 
integral terms in (58) as the ‘transonic wave drag’, and to the last integral as the 
‘relaxation drag’. This division is simply for convenience later: note that the 
‘transonic wave drag ’ in fact includesrelaxation terms. Werecall that 0 d p 2  6 co. 

When h 4 CQ and we are not too near to p = 00, it  is found that the transonic 
wave drag contributes a term 

to whilst the relaxation drag part behaves like 

The net effect is to give rise to a positive value of VD, of course, but it is interesting 
to note that the relaxation-drag contribution falls to zero and then becomes 
negative as p passes through the value unity. That expression (59b)  is part of a 
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general result valid for all values of h can readily be seen from equation (58). The 
change-over point occurs when 

u = (a,,.zmP, (60)  

roughly speaking, if alm and aZm do not differ greatly. Meanwhile, the transonic 
wave drag continues to increase as p increases, as indeed does the net drag. 

Still retaining the assumption h -+ 00, but now imagining that pz has become so 
large that PzLIh -+ 00, we find that the two parts of So%’ behave like 

and 

respectively. The transonic wave drag in (61 a )  continues to increase asp  increases 
to its final value in the present conditions and, in line with the comments made 
above about the relaxation drag, this part (61 b)  is found to be negative. The 
double integral term in (6 1 a )  is the full supersonic wave drag for a doubly pointed 
body in a non-relaxing gas flow (essentially a positive contribution to So%?D). 
It seems clear from the results (59a)  and ( 6 l a )  that the transonic wave drag 
increases steadily from zero at the subsonic (Me = 1) end of the transonic range 
up to the full supersonic value at its upper end (M, = l), a result which we will 
confirm below in the other extreme of h -+ 0. 

We observe also (at least when h -+ a) that the net value of So%’ on passing 
out of the transonic regime ( p  =a) is a little greater than one half of the full 
supersonic wave drag without relaxation effects. However, the linear solution 
breaks down at  M, = 1 when h -+ co, on account of the logarithmic singularity 
arising in b, (see equation (46)).  

When h -+ 0, suitable approximate forms of the transonic wave and relaxation 
drags are, in the former case, exactly equation ( 6 l a )  and, in the latter case, 

provided ,3 is not too near to zero. In  the event that P2LIh + 0 despite L/h being 
% 1, we find that the two parts of %= are given by equation (59 a )  for the transonic 
wave drag, and 

for the relaxation drag. Note that the sum of expressions (59a)  and (63)  gives 
a value of SOWD exactly equal to that in equation (57) when both pZ and p2  are 
zero. When pz = p” =!= 0,  however, the net transonic drag is greater than the 
subsonic value, as we should expect. That a similar state of affairs arises when h is 
large follows from comparison of equation (55) with the sum of expressions (59a)  
and (59b) .  
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An explanation of the negative contribution to the over-all drag which is 
provided by the relaxation term for p 2  > 1 will be deferred until the section on 
pressure distributions which is to follow, but we remark here that it appears to be 
a characteristic of the pointed-tail body shape required in the sub- and transonic 
regimes by the present theory. 

Case (iii) 

tion (as), and it follows that 
For the fully supersonic regime, the relevant value of b, is found from equa- 

In  this equation, B2 > 1 in the ‘relaxation’ drag integral. The contribution 
made by this integral to the net VD value is negative, as we shall confirm below. 
The first integral in equation (64 )  is the full supersonic wave drag for a non- 
relaxing gas flow. 

When h --f 03 and we are not too near to Mf = 1, the relaxation drag is 
approximately 

- 

whilst, when h --f 0, it contributes a term 

for all values of B2. 

tion drag behaves like 
If h -+ 03, yet B2 becomes so large that still B2 L/h 9 1, we find that the relaxa- 

When B2 = 00, equation (67 )  plus the full supersonic wave drag gives a result for 
S0gD which agrees with the sum of expressions ( 6 l a )  and (61 b )  for p 2  = 03. The 
same agreement occurs in the near-equilibrium state, for putting p 2  = 00 in the 
sum of equations ( 6 l a )  and (62 )  gives exactly the result found by adding 
equation (66 )  with B2 = 03 to the full supersonic wave drag. 

In the supersonic rdgime, the effect of relaxation is such as to give gD values 
which are always less than the non-relaxing wave drag on doubly-pointed bodies. 

To conclude this section on doubly-pointed bodies, we consider a specific 
example, namely the body whose meridian profile is a parabolic arc. We only 
examine the sub- and supersonic regimes since, for most practical cases, the 
transonic regime is very narrow and the solutions that we have obtained in this 
region are of rather more academic than practical interest. We shall write 
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where a2 may be either p2 or B2, as the case may be. VDr will be referred to as the 
relaxation drag coefficient. The method of evaluation of the integral in (68) is 
outlined in Appendix B. Equation (B 12) gives the equation for the meridian 
profile and equation (B 13) gives the value of VDr for this body shape, assuming 
that the reference area 8, is equal to the maximum body cross-sectional area. 
Note that in deriving equation (B 13) the body length L has been set equal to one 
(no loss of generality is incurred by this), so that h is the same as TU measured in 
units of body length. 

h (units of body length) 

FIGURE 1. Relaxation drag for a parabolic arc body. (alm/a2m)a= 1.1. 

Figure 1 shows 2(32~?)-~ plotted against h for two values of a2, namely 
0,574 and 1.327. These values correspond to values for lMt of 0.9 and 1.2 respec- 
tively, with the square of the sound-speeds ratio equal to 1.1. This latter value is 
roughly that which occurs in CO, at temperatures somewhat greater than 288 OK. 
For this linear triatomic molecule, the relaxing internal mode is that involving 
transverse vibrations and at  N.T.P. the relaxation time is about 10psec. We note 
that the maxima for lgDrl occur for values ofh between 0.1 and 0.3 body lengths, SO 

that with values of U of about 3 x 104cm/sec, we find that the body lengths to 
give this maximum are roughly of order (O.3/pa) cm, where pa is the free-stream 
pressure measured in atmospheres. In  this particular case then, even pressures as 
high as 10-1 atm. can lead to maxima in for body sizes comparable to those 
found in a number of experimental facilities. It is not possible to state in general 
terms just how significant VDr is in relation to skin friction and form drag, since 
these are viscous effects and hence outside the scope of the present theory. 
However, under conditions like those just described for the occurrence of 
(VDrlmax, the Reynolds number based on body length should be of order lo6. Thus 
the laminar-friction drag coefficient based on body surface area will be of order 
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which, for a slender body, is roughly a qD of 10-36-1 when the reference 
area is rrS2 (as in the definition of gD,). Allowing for the crudeness of the estimated 
friction drag coefficient, it is seen that I(iDrlmllxmay be comparable with it in some 
circumstances. For a well streamlined body, on which friction drag predominates, 
it seems safe to conjecture that relaxation drag may cause significant increases in 
over-all drag in subsonic flow. Clearly each special case must be examined in 
detail, but the foregoing estimates do tend to suggest that such examination is 
worthwhile. 

In  supersonic flow, of course, the drag picture is dominated by the appearance 
of wave drag. For the case of the parabolic-arc body, the wave-drag coefficient 
gDw is found to be given by 2(326)-2q - _I- 

and clearly this is much larger than the values of shown in figure 1. We note 
that 

In  conclusion we note that the amplitude of the effects of relaxation will 
increase as a2 increases. Broadly speaking, this implies that the largest effects will 
arise in the transonic regime, but, for obvious reasons, the present linearized 
theory cannot be used to obtain numerical results of convincing accuracy in that 
Mach number range. a2 is increased at any M, value by increasing the speeds of 
sound ratio al/a2. A maximum value of (al/a2)2 (namely 25/21) occurs for rota- 
tional relaxation in a diatomic gas, but we note that much larger values can arise 
when chemical reactions are involved (e.g. see Clarke 1958). 

Dw - 1 2 )  

may still be comparable with friction drag coefficients. 

( b )  Blunt based bodies 

Confining ourselves to the supersonic regime in order to be able to deal with 
this particular class of body shapes, equations (33), (34) and (49) combine to 
show that 

(69) 
where YD is defined as in (53) above. The final integral here can only be evaluated 
once the particular body shape and attitude is given. For example, it is this 
integral which determines the effects of body incidence on UD. Since the cross- 
flow problem is unaffected by relaxation to the present order of approximation, 
we will have no need to consider questions of body attitude, for the results will be 
identical with those already obtained by Ward. Thus we can confine our attention 
to the ‘zero-incidence ’ behaviour of the integral in question, incidence being 
measured from the body position giving zero cross-wind force. 

In  particular, we examine the body of revolution, for which the normal 
derivative a+/av becomes simply a#/&, and the boundary condition gives 

a#lar = U R ’ ( ~ ) ,  (70) 
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on the contour C. WewriteR(x) for bodyradius, the prime denoting differentiation 
with respect to x, as usual. In  these circumstances, the disturbance potential is 

as there is no dependence on the angle 8, and it then follows that 

When we take the value of b, from equation (49) and use the form of IB given in 
equation (39), the sum of wave plus relaxation drag for a blunt-based body of 
revolution at zero incidence is found to be 

= -__ f l ’ 2 ( L )  log {&BeB(L)} - X”(y) log (x - y) dy dx 
2n 

Notice the appearance of the factor Be in the first term of (73). Because this term 
arises naturally in the expression for qD we shall take the equilibrium state as the 
basis for comparison in what follows. The first three terms in (73) will be referred 
to as the drag occurring in a non-relaxing gas; the last two integrals therefore 
summarize the relaxation effects. 

In  the near equilibrium state, these relaxation terms behave like 

to a first order in A. When h --f co (and B2 is not too large), they are approximately 

This last result confirms that, in the limit h 3 co, the value of floeD becomes the 
one appropriate to a gas flow at the frozen Mach number H,, since the logarithm 
here combines with that in the non-relaxing gas flow to give a term 

- fl”(L) (2n)-llog {+B, R(L)}. 

This result also indicates that S0qD is always somewhat less than the ‘frozen 
Mach number’ value. 

It is not so easy to deduce what is happening to SoVD in the near-equilibrium 
state, since its behaviour will depend on the relative magnitude of the terms 
S‘(L) Xf‘(L) and the integral in (74). We may expect that the behaviour depends 
on body shape, and it seems reasonable to use the parabolic arc body of the 

38 Fluid Mech. 11 
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previous numerical example to indicate roughly what this may be. If this body 
shape is assumed to terminate at x = fL we find that the term in the brackets { }  
in (74) has the value + (32nS2)2L(81/640); when the body ends at  x = 4L, it has 
the value +(32nSz)2L(1/10) and when the body ends at $L, it  has the value 
- (32nS2)2L(3/32). In  the last case, where X'(x) is definitely positive at the base, 
the drag is greater than the non-relaxing gas value; but, somewhere between this 
condition and the one which gives S'(x) = 0 at the base, the relaxation drag 
increment passes through zero and becomes negative. 

To summarize then, we always expect to find drag less than the frozen Mach 
number value. Depending on the body shape and the values of A and B2, we may 
even find drag somewhat less than the equilibrium-flow value. As A increases in 
such a case, it  seems reasonable to suppose that the net drag will eventually begin 
to increase, become equal to the equilibrium value once more (this time at  a finite, 
non-zero value of A) ,  and thence lie between the equilibrium and frozen-flow values 
of VD for all higher values of A. It is worth noting the difference between the 
(quite complicated) drag behaviour deduced here and that found by Vincenti 
(1960) for the wavy wall. In  the latter case, VD always lies between the equilibrium 
and frozen Mach number values in the supersonic rbgime, probably on account 
of the multiplicity of reflected disturbances emanating from upstream regions 
of the flow. 

The simplest example of a blunt-based body is the right-circular cone and we 
proceed to give some numerical results for this shape. With a body length of unity, 
we take 

R(x) = SX 

for the cone. Whence it follows that S"(x) = 2nP.  Some of the results in 
Appendix B can be used to evaluate the integrals occurring in equation (73), and 
it is found that the relaxation drag coefficient gDr is given by 

8-2 vDr = h2( 1 - B-4) - h2( e--l/h - B-4 e--B2/h) 

-A(e--llh - B-2e-B21h) +El( l /h) - El(B2/h). (77) 
(The notation is explained in Appendix B.) The wave-drag contribution to the 
total VD is given by 

(78) S-'VDW = 2log(2/BeS)-l, 

where we write VDw for the wave-drag coefficient. All drag coefficients have been 
based on a value 8, = nS2. 

Figure 2 shows S-2%?Dr plotted against h in units of body length for the value 
B2 = 1.223. With the square of the speeds of sound ratio equal to 1.1, this corre- 
sponds to an Me of 42.  

The presence of the factor log (2/Be S) inVDw makes the ratio of qDr to wave drag 
dependent on the thickness ratio of the body. For example, when S = tan 5", 
&-2%'Bw = 5.24. We see that, as in the case of the parabolic arc body at supersonic 
speeds, the contribution made by relaxation effects is very small in comparison 
with the wave drag. 

The cone is a further example of the type of body for which VDr is always of one 
sign for any value of h (compare the ' one-quarter ' parabolic-arc body mentioned 
above). 
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To conclude this section on drag, we may summarize the results briefly by 
saying that the effects of relaxation depend quite strongly on actual body shape. 
It seems likely that such effects are comparable with skin-friction drag but do not 
seem to approach the magnitude of wave-drag coefficients. 

FIGURE 2. Relaxation drag for a cone. 

6. The pressure coefficient 
The pressure coefficient is defined in equation (16), which also shows the 

approximate relation between Vp and the disturbance potential in the present, 
linear, theory. We are rather more interested in the differences which arise as a 
result of relaxationeffects, andit is clear fromequations (16) and (31) that thisonly 
involves the difference between the relevant b,(x) functions. In  fact, writing (VP)? 
and (%?p)e for the pressure coefficients with and without relaxation effects, 
respectively, with a similar suffix notation for the b, functions, it  is found that 

A(Vp) = (gp)?- (%?p)e = - 2?7-'(b&- bAe). (79) 

(The prime on b, indicates differentiation with respect t o  x.) To the present 
approximation, equation (79) is true for all shapes and attitudes which come 
within the classification 'slender body'. (V')e is chosen to be the pressure co- 
efficient under full equilibrium conditions (i.e. the singular case, h = 0). 

We shall not consider the transonic regime here and, this being so, it  follows 
that 

(80) 
1 

AeP = - - (I, - X " ( X )  log a}, 
7T 

where a can be either p or B, as the case may be. (Equation (80) follows from the 
results for b, given in (36) and (as), together with the definition of I, in (37) and 
(39).) Some of the approximate forms of Ia derived in $ 4  can now be used to 
indicate roughly how AVp behaves in different situations. (One can verify that 
the derivative of the approximate form of I, is the same as the approximate form 
of the derivative.) Thus, when x / h  -+ 0, equations (40) and (50) show that 

nAVp II i$( 1 - a') X- l  S'(X)  + S"(Z) log a, (81) 
38-2 
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and when x/h -+ 03, equations (41) and (51) show that 

nA%p 21 :A( 1 - a-2) S”’(X). (82) 

Since equation (81) will be a valid approximation for sufficiently small x for 
any value of A, other than the singular value h = 0, we infer that qP at the nose 
of the body always equals the frozen flow value. The only exception occurs in the 
singular case h = 0, when of course AqP = 0 everywhere, as can be seen from 
equation (82). In  general then, a relaxation zone, starting from the frozen qP 
value begins to form at the nose of the body and this is true whether the flow be 
subsonicorsupersonic. Equation (82) indicates that the cone, for whichS”’(x) = 0, 
is rather a special case in so far as no relaxation effects will occur in the near 
equilibrium state ( A  + 0) in regions where x/A 9 1. 

It is interesting to note that the present theory indicatesno ‘ upstreaminfluence ’ 
of relaxation effects on qp in subsonic flow. Indeed the integral term 4 (and 
hence its derivative with respect to x) vanishes for all x < 0. Since P ( x )  is also 
zero for x < 0, it follows from equation (80) above that Vp has its equilibrium 
value upstream of n: = 0. That upstream influence on %‘’ does exist in subsonic 
flow follows from the behaviour of the second integral in (36). When x < 0, this 
integral can be written as 

It will shortly be shown that similar conclusions do not follow about the relaxation 
effects on the translational and internal mode temperatures in subsonic flow. It 
would seem reasonable to conclude that the lack of upstream relaxatidn effect upon 
qP in subsonic flow is a characteristic of the linear theory, and that it would there- 
fore be safer to say that such effect as might exist for %‘’ is at  most of second 
order. In  supersonic flow there is no such difficulty since upstream influence 
(quite properly) does not exist at all. 

Returning to the approximate AWP values in equations (81) and (82), we 
observe first the change in sign of the terms involving a in the two Mach number 
rkgimes. These changes of sign are consistent with the relaxation drag behaviour 
in subsonic and supersonic flow and indicate in fact how this comes about. For 
subsonic flow with L/A -+ 0 (remembering that a = < l), equation (81) shows 
that it is the term in S’(x) which produces the relaxation drag, since that in AS”’(x) 
has zero net effect on the drag of the doubly pointed bodies required in the sub- 
sonic flow case. In  supersonic flow under the condition L/A -+ 0 the influence of 
this X“(x) term begins to be felt on the blunt based bodies permitted in this 
rbgime. 

The influence of body shape on the pressure shifts arising from relaxation effects 
is clear from equations (81) and (82). It is also clear that each particular case must 
be treated on its merits. What is not quite so clear is how these effects are brought 
about. The most plausible explanation seems to be just the one advanced by the 
author (Clarke 1960a) to explain the much simpler behaviour in the relaxation 
zone behind a sharp corner in supersonic flow, namely that the outgoing pressure 
waves generated by the body are reflected back towards the surface by the 
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relaxation-generated vorticity distribution. It is not surprising to find that 
the signs and magnitudes of these reflected waves depend on body shape and 
Mach number r6gime. To conclude this section, we remark that past experience 
has indicated that a linearized theory is capable of yielding quite accurate 
estimates of the superimposed effects of relaxation, even though the basic 
quantities (like (Vp), for example) are not so well predicted. Also, it  must be 
emphasized that the solutions discussed here, and indeed in the section to follow, 
are only valid on and near the body surfaces. 

7. The temperature variations 
I n  order to find the variations of the internal mode and translational tempera- 

tures, we first note that the energy equation can be written in terms of the specific 
enthalpy h and pressure as follows: 

Dh D p  
Dt Dt 

p--- = 0. 

The enthalpy h can be written as CplT1+Cc,,T2 for present purposes, and, 
consistent with the previous linearizations, p can be replaced by its undisturbed 
stream value pm. Then this equation can be integrated to give the approximate 
result 

We have written 
(83) cplATl+c,2AT2 = P;l(P-P)m). 

AT, = Tl-Tlm, AT2 = T2-Tl,, (84) 

since T2, = Tim. It follows from equations (8) and (83) that 

Putting D/Dt 2: U ajax, we readily find that 

in subsonic flow. In  supersonic flow the lower limit can be replaced by zero. 
Using equation (8), and after some rearrangement, we find that 

Integration of equation (86) by parts and combination of the result with equa- 
tion (87) shows that 

This last result shows a t  once that an upstream influence of the relaxation 
effects exists for the temperatures in subsonic flow, since aFp/ay =/= 0 for y < 0 in 
that case. 

It is important to observe that the temperatures on and near the body are 
functions of the whole pressure coefficient. In  particular this fact is significant 
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when we examine the difference between Tl and T,. In  the singular case h = 0, the 
difference vanishes, of course, but we may use the other limiting case of h -+ a3 to 
illustrate the practical situation. For thenear-frozen state we may write T, N T,,, 
whence T, - T, 2~ AT, and we find that this difference in the limit is just $U2%p/Cpl, 
(according to either equation (87) or equation (88)). Thus the difference between 
Tl and T2 depends on the body shape and attitude in the same way as %’. Clearly 
this behaviour occurs for all non-zero A, but we expect to find the amplitude of the 
difference decreasing in a general way with decreasing A. It may be of some 
significance however that relatively large differences between Tl and T2 could 
arise locally due to some peculiarity in body shape. The results presented above 
enable calculations of T, and T, to be made (within the confines of the slender- 
body approximation), and these values could be used to estimate temperatures 
at the edge of the thermal boundary layer. The latter statement is made with 
reservations, since it may happen that the concept of the boundary layer, and the 
‘ body-plus-displacement-thickness ’ treatment which is implied by it, begin to 
lose validity at  pressures (and hence, broadly speaking, Reynolds numbers) low 
enough to make AIL sufficiently large. (The question of relaxation effects on su’ch 
a flow is an interesting one, but outside our present scope. From the foregoing 
results we might expect that viscous and relaxation effects will be comparable over 
large regions of the flow field.) Clearly any particular case must be examined on 
its merits, but we may quote the case of carbon dioxide, for which appreciable 
relaxation effects are present at pressures high enough for the low-density aspects 
of viscous flow (such as slip phenomena) to be insignificant. In  other words, the 
mean-free molecular path will be small compared with the boundary-layer 
thickness in this case. The non-dimensional group which roughly determines the 
state of the internal energy mode in a boundary layer is ( S ? / T ’ ~ ) * ,  where 8, is 
boundary-layer thickness and 9 is the self-diffusion coefficient for the particular 
(pure) gas in question. Assuming a laminar boundary layer, which seems 
reasonable in the circumstances, we have 8, N x*(v/U)*, where Y is the kinematic - . .  . 

viscosity. Thus, 

The ratio v / 9  is approximately unity for a number of gases, and it follows that if 
the external (inviscid) flow is near-frozen it will also be near-frozen in the 
boundary layer. The appearance of the ratio xlL above guarantees that it will be 
frozen at the nose of the body, but it is significant to notice that it is (L/+ U)* (or 
roughly A-4) which determines boundary-layer behaviour whilst the external 
flow is governed by the value A-1. 

In  cases where near-frozen flow occurs in the layer, the effectiveness of the 
actual material of the body’s surface in accommodating the internal mode 
becomes important in the determination of energy flux rates (see, for example, 
Clarke 1960 b).  Thus the interpretation of heat-transfer measurements on bodies 
in polyatomic gas flows must be approached with caution. Similar arguments 
apply with even greater force to the case of chemically reacting gas flows, on 
account of the greater energies involved and the possibility of finding wide ranges 
of catalytic efficiencies amongst practical materials. Remarks such as these might 
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apply to heat-transfer measurements on, let us say, a slender cone in a typical 
shock tube. Results like those presented above may be used to estimate the 
conditions at the edge of the boundary layer in such a case. 

The author would like to acknowledge the helpful advice and criticism received 
from Professor G. N. Ward and Mr G. M. Lilley during the preparation of this 
paper. He is also indebted to the referee for several constructive suggestions. 

Inversion integrals for the function bo(x) Appendix A 
Case (i) 

In  the subsonic case, bo(x) is written as 

bO(4 = -Ao(w) {C+% ( iP,  I4 ZI, (A 1 )  

(see equations ( 2 2 ) ,  (23) and (32)). To accomplish the inversion integration, we 

C+log IwI bo(x) =I -Ao(o)log(gp,)-iw(-A,) __ ~- 
write 

[ -iw ] 
1 + g ( - ; w + p / h )  ( - A o ) ( - -  __-~-__ 

c +log (w + iPZ/h) 
- i (w  -t iPZ/h) 

The first term in (A 2 )  is simply ao(x) log ($pf). To invert the remainder we make 
use of the fact that - iw is equivalent to the operation a/ax and treat the remaining 
parts by means of the Faltung theorem for complex Fourier transforms, which 
states that 

(A 3) 
1 - m  

__ 1 f ( Y )  d x -  Y )  dY = mJ) Q(w)* 
J(24 --m 

P and G are the transformsoff(x) and g(x). Thus we can deal with the log terms in 
curly brackets separately, taking care to use the contour described in $3,  case (i). 

The first curly bracket term in (A 2) inverts to a function g,(s), where 

After some manipulation it follows that 

In  dealing with the second and third curly bracket terms in equation (A 2), 
which we call g,(x) and g3(x) in the physical plane, respectively, the complex 
w-plane can be cut from -co-i/P/h to -i/P/h and -co-i/h to -i/h in each 
case, and the real w-axis contour shifted down to positions just above each 



600 J .  P. CEurke 

branch cut, indented above the singularity, and running on to + co - iP2/h and 
+ 00 - i/h respectively. Taking g,(x), we find that 

dz 
-iz’ 

J(2n) e@/Ag2(x) = (C+logz) e-izz- 

where z is a new variable related to w by 

It follows from (A5) that g2(x) = 0 for x < 0. When x > 0,  
z = w+iP2/h. (A 6) 

,/(27r) e@2z/Ag,(x) = (C +log (+ in) (C +log E eio) e-ixeei8do 

in the limit as 8 -+ 0 (z is put equal to ( on the real z-axis and equal to E eis on the 
indentation around the branch point). The integrals in (A 7) can be rearranged, 
and it is then possible to show that 

e-BaX/A 1 (As)  
g2(x) = - 4127~) e-Baz/A log x + in,- for x > 0, JW) 

= 0 for x < 0. 

The value for g3(x) follows a t  once on setting 82 in (A 8) equal to 1. 
The function f (y) in equation (A 3) can be identified as a,@) in the notation 

of the text; whence, using the theorem expressed there together with the results 
derived above, it follows that 

The imaginary terms in g2(x) and g3(x) are found to cancel out in the expression 
for b,(x), as indeed they must. If the indicated operations are performed on the 
integrals in (A 9) and the value US’(x)/2n substituted for uo(x), the result (36) is 
obtained. We note that a,(x) = 0 for x < 0 and x > L;  whence the limits in 
equation (36) follow. 

Case (ii) 
I n  the transonic case (see 3 3, case (ii)), we write the transform of b,(x) in the 

same way as in (A 2 )  with the following differences: Iw[ is replaced by w ,  p2 by 
-p2, and 2 by 2’. Inversion now takes place just above the real o-axis, indented 
to pass above the point w = 0. These differences have the following effects. 
Using a notation consistent with that of the previous case, we have 

in2 
g,(x) = -4(2n)logx+-- for x > 0,  

J(2n) 
I = 0 for x < 0. 
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Because having - p 2  for p2 in the g2 term puts the relevant singularity above the 
real w-axis, it follows that 

(A 11) I g2(x) = 0 for x > 0, 

= J(27r) e-~21~i/*log 1x1 for x < 0. 

The function g3(x) is unchanged (see (A 8) withP2 = 1). Using the theorem (A 3), 
etc., it follows that 

the imaginary parts of the g(x) functions cancelling out as before. With a little 
rearrangement and the substitution of the value for a,(%), we easily obtain 
equation (43), provided that we let y approach x in the last two integrals in (43) 
like x+ 8 and z - E respectively (i.e. we take a principal value). 

Case (iii) 
Once again we use a form of b,(x) like that in (A 2 )  only here we write Bf for ,4!, 

B2 for p2, iw for IwI and 2“ for 2 in the first curly bracket expression. 
It follows that the g2(x) and g3(x) terms are identical with those of case (i) when 

B2 is written for p2; and, using the contour described in $3,  case (iii) for the 
log ( iw)  term, we find that 

g,(x) = -,/(%r)logx for 

= 0 for x < 0. 

The result (49) now follows in the usual way. We remark here that the Laplace 
transform could easily be used in the fully supersonic case, with its absence of 
upstream influence effects. The Fourier-transform treatment has been retained 
since the problem can then be dealt with in a unified fashion. 

Appendix Evaluation of the relaxation drag integral 

The relaxation drag integral can be written generally in the form 

where a2 may be p2, p2 or B2, depending on the Mach number r6gime. The inner 
integral in (B I)  is equal to 2I, - 2 S ( x )  log a in the notation of (37) et seq. 

(B 2 )  
In  it we write x - y  = ho, 

so this inner integral can be rewritten in the form 

ZI, - 2S’(x) log a = h S”(x - ho) (Ei( - a) - Ei( - a20)} do. (B 3) 
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The cross-sectional area S(x)  of a wide variety of body shapes can be expressed 
as a polynomial in x, whence i t  follows from equation (B 3) that we shall have 
to deal with a number of integrals of the type 

In  writing (B 4), use has been made of the rather more convenient notation for 
the exponential integral, which puts El(c) = - Ei( - c), etc. (see Erdelyi, Magnus, 
Oberhettinger & Tricomi 1953). Then, using the results given in this reference, 
it  is found that 

(n  + 1) I, = I?( 1 + n) [a-2(,+1) - 11 - a--2(,+1) [F( 1 + n, a2x/h) - (aZx/A)"+l El(a2x/h)] 

(B 5) 

The functions I?( 1 + n, x/h),  etc., in (B 5 )  are one form of the incomplete gamma 

+ I?( 1 + n, x/h) - ( S / A ) ~ + ~ E ~ ( X / A ) .  

function Pm 

r ( i + n ,  x /h)  = e-lt"dt. J .,A 
It follows that I, can now be expressed in terms of a sum involving the appro- 

priate In's with suitable coefficients. The restriction to pointed-nosed bodies 
ensures that the body radius R(x)  will behave like x, at worst, in the nose region. 
Hence n in (B 4) will never be less than zero. 

In evaluating the drag integral in (B l), we now encounter terms like 

The body length L has been set equal to 1 here. There is no loss of generality in so 
doing, but all lengths are hereafter measured in terms of L as the basic dimension. 
In  other words, h in (B 7) and (B 8) (and subsequently) stands for the ratio of 
relaxation length to body length. We find that 

(n+ 1) J,,, = T(a)  -?(a, i /h) +hn+ly(a + n+ i , l / h )  - r ( a )  
+ a-2ay(a, a2/A) - a--B(a+n+l)hn+ly(a + n + 1, a2/h), (B 9) 

where ?(a, l /A),  etc., stands for the other incomplete gamma function 

y(a,  I/A) = e-ttu-ldt .  (B 10) 
0 

Also (n+ 1) K ,  = a-2(n+1)hn+ly(n+ 1, a2/h) +E1(a2/h) 

- h,+l y (n + l , l / h )  - El( l/h). (B 11) 

Some results have been computed for the body whose meridian profile is a 
parabolic arc meridian, for which 

R(x)  = 46(x-x2). (B 12) 

This has S"(X) = 32d2(  1 - 63 + 6x2),  
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whence it follows from the general results given above that 
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provided that we take So = 7~62. 

series 
The functions el,  e3 and e6 appearing in (B 13) are the truncated exponential 

(B 14) 
7L 2" 

en@) = -. 
They arise from the fact that, when n is an integer, the incomplete gamma 
function y (  1 + n, x )  can be expressed in the form n![l  - e-fle,(z)]. 

m=o m! 
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